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Abstract
The numerical turbulence experiments conducted by Gotoh et al are analysed
with high precision with the help of formulae for the scaling exponents of
the velocity structure function and for the probability density function of the
velocity fluctuations. These formulae are derived by the present authors,
with the multifractal aspect based on statistics constructed using generalized
measures of entropy, i.e., the extensive Rényi entropy or the non-extensive
Tsallis entropy. It is shown, explicitly, that there exist two scaling regions,
i.e., the upper scaling region with larger separations which may correspond to
the scaling range observed by Gotoh et al and the lower scaling region with
smaller separations which is a new scaling region, extracted for the first time
by the present systematic analysis. These scaling regions are divided by a
definite length approximately of the order of the Taylor microscale, which may
correspond to the crossover length proposed by Gotoh et al as the low end of
the scaling range (i.e., the upper scaling region).

Since the discovery of the Kolmogorov spectrum [1], there have been many investigations,
including those in [2, 3], carried out in an effort to understand the intermittent evolution
of fluid in fully developed turbulence. Among them, the line of study based on a kind of
ensemble-theoretical approach, starting from the log-normal model [4–6], continues with the
β-model (a one-fractal dimensional analysis) [7], the p-model (a multifractal model) [8, 9],
the 3D binomial Cantor set model [10] and so on. Among this series, an investigation of
turbulence based on generalized entropy, i.e., the Rényi [11] entropy or the Tsallis [12, 13]
entropy, was initiated by the present authors [14–20]. After a rather limited investigation of
the p-model [14], the approach was developed further in order to permit derivation of the
analytical expression for the scaling exponents of the velocity structure function [15–18] and
determination of the probability density function (PDF) of the velocity fluctuations [18–20]
by a self-consistent statistical mechanical approach.

With the help of the analytical formulae derived in [15–20], we will analyse, in this paper,
the PDFs of velocity fluctuations observed in the beautiful DNS (i.e., the direct numerical
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simulation) conducted by Gotoh et al [21]. We will deal with the data for the Taylor microscale
Reynolds numberRλ = 381, since for this Reynolds number Gotoh et al obtained the PDF with
accuracy up to the order of 10−9–10−10—far better than that in any previous experiments, real
or numerical. We showed in [19] that our formulae can explain quite well the PDFs observed in
the real experiment by Lewis and Swinney [22] for turbulent Couette–Taylor flow atRλ = 270
(Re = 5.4 ×105) produced in a concentric cylinder system in which, however, the PDFs were
measured only with accuracy of the order of 10−5. Note that the success of the present theory in
the analysis of this turbulent Couette–Taylor flow may indicate the robustness of singularities
associated with the velocity gradient even for the case of no inertial range. We have already
made clear in [20] that the present theory can also explain quite well the PDFs of longitudinal
velocity fluctuations reported by Gotoh et al [21], and have revealed the superiority of our
PDF to the one derived in [23] when the accuracy is raised to of the order of 10−9. Encouraged
by the success of these preliminary tests, we will apply our theory to make further precise
analyses of the data obtained in [21], including the PDFs of transverse velocity fluctuations in
addition to those of longitudinal fluctuations.

The basic equation describing fully developed turbulence is the Navier–Stokes equation
∂ �u/∂t + (�u · �∇)�u = −�∇(p/ρ)+ν ∇2 �u for an incompressible fluid, where ρ, p and ν represent,
respectively, the mass density, the pressure and the kinematic viscosity. Our main interest is
in the correlation of measured time series for the streamwise velocity component u, say the
x-component of the fluid velocity field �u, in the turbulent flow produced by a grid with size
�0 put in a laminar flow. Applying Taylor’s frozen-flow hypothesis, the quantity of interest
reduces to δu(r) = |u(x + r) − u(x)| representing the spatial change of the component u.
We assume that downstream of the grid there appear a cascade of eddies with different sizes
�n = δn�0 where δn = δ−n (δ > 1, n = 0, 1, 2, . . .). At each step of the cascade, say at the nth
step, eddies break up into δ pieces, producing an energy cascade with the energy-transfer rate
εn that represents the rate of transfer of energy per unit mass from eddies of size �n to ones of
size �n+1.

The Reynolds number Re of the system is given by Re = δu0 �0/ν = (�0/η)
4/3 where

η = (ν3/ε)1/4 is the Kolmogorov scale [1] with ε the rate of energy input to the largest eddies
of size �0, i.e., ε0 = ε. Here, we have introduced the notation δun = δu(�n) representing the
velocity difference across a distance r ∼ �n. Thus, our main focus of interest in the following
reduces to the fluctuation of the velocity difference δun corresponding to the size of the nth
eddy in the cascade. Note that the dependence of the number of steps n on r/η, within the
analysis where intermittency is not taken into account [1], is given by

n = − logδ r/η + (3/4) logδ Re. (1)

For homogeneous and isotropic turbulence, there is a relation between the Taylor microscale
Reynolds numberRλ and the Reynolds numberRe [24]: R2

λ = ARe whereA is a real number
of the order of 0.01–10 depending on the experimental set-up.

For high Reynolds number Re � 1 or for the situation where the effects of the kinematic
viscosity can be neglected compared with those of the turbulent viscosity, the Navier–
Stokes equation for incompressible fluid is invariant under the scale transformations [9, 25]
�r → λ�r , �u → λα/3 �u, t → λ1−α/3t and (p/ρ) → λ2α/3 (p/ρ). Here, the exponent α is
an arbitrary real quantity which specifies the degree of singularity in the velocity gradient
|∂u(x)/∂x| = lim�n→0 |u(x + �n) − u(x)|/�n = lim�n→0 δun/�n. This can be seen from the
relation δun/δu0 = (�n/�0)

α/3, which leads to the singularity in the velocity gradient [26] for
α < 3, since δun/�

α/3
n = constant. We also have the relation εn/ε = (�n/�0)

α−1.
Let us determine the probability P (n)(α) dα of finding at a point in physical space an

eddy of size �n which has a value of the degree of singularity in the range α ∼ α + dα.
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Assuming that each step in the cascade is statistically independent, i.e., P (n)(α) = [P (1)(α)]n,
our task reduces to determiningP (1)(α). In order to proceed, we have assumed [15–20] that the
underlying statistics describing the intermittent evolution of fully developed turbulence is the
one given by the Rényi entropy [11] SR

q [P (1)(α)] = (1 − q)−1 ln
∫

dα P (1)(α)q , or that given

by the Tsallis entropy [12, 13, 27] ST
q [P (1)(α)] = (1 − q)−1

(∫
dα P (1)(α)q − 1

)
. Taking an

extremum of each of these entropies with appropriate constraints, i.e., the normalization of the
distribution function

∫
dα P (1)(α) = constant and the q-variance kept constant as a known

quantity: σ 2
q = 〈(α − α0)

2〉q = ( ∫
dα P (1)(α)q(α − α0)

2
)
/
∫

dα P (1)(α)q , we have [15–18]

P (1)(α) ∝ [
1 − (α − α0)

2/(�α)2
]1/(1−q)

(2)

with (�α)2 = 2X/[(1 − q) ln 2]. The Rényi entropy has an information-theoretical basis,
and has extensive character, as the usual thermodynamical entropy does. On the other hand,
the Tsallis entropy is non-extensive, and therefore it provides us with an attractive test for
the generalized statistical mechanics which deals with, for example, systems with long-range
correlations with a hierarchical structure where the usual extensive characteristics of statistical
mechanics are not present. Note that the distribution functions which give an extremum of
each entropy have a common structure (see (2) for the present system where q � 1), in spite of
the different characteristics of these entropies, and that the values of α are restricted to within
the range [αmin, αmax], where αmax −α0 = α0 −αmin = �α. Note that σ 2

q = 2X/[(3−q) ln 2].
By making use of an observed value of the intermittency exponent µ as an input, the

quantities α0, X and the index q can be determined, self-consistently, with the help of the
three independent equations, i.e., the energy conservation: 〈εn〉 = ε; the definition of the
intermittency exponent µ: 〈ε2

n〉 = ε2δ
−µ
n ; and the scaling relation: 1/(1 − q) = 1/α− − 1/α+

with α± satisfying f (α±) = 0 [15–18]. Here, the average 〈· · ·〉 is taken with P (n)(α). The
scaling relation is a generalization of the one derived first in [28, 29] to the case where
the multifractal spectrum has negative values. For the region where the value of µ is
usually observed, i.e., 0.13 � µ � 0.40, the three self-consistent equations are solved to
give the approximate equations α0 = 0.9989 + 0.5814µ, X = −2.848 × 10−3 + 1.198µ
and q = −1.507 + 20.58µ − 97.11µ2 + 260.4µ3 − 365.4µ4 + 208.3µ5. These equations
are slightly different from those given in [19], since the region of µ has been extended a
little bit.

If we put q = 1 from the beginning, i.e., start with the Boltzmann–Shannon entropy, and
take an extremum with the same constraints as were given above for q = 1, we have a Gaussian
distribution function. The parameters α0 and X are then determined by two conditions, i.e.,
energy conservation and the definition of the intermittency exponent. The results obtained [18]
completely coincide with those in the log-normal model [4–6]. Therefore, the present approach
can be interpreted as an extension of the one in the log-normal model.

It is known that in turbulent flow there are two mechanisms that govern its dissipative
evolution, i.e., the one controlled by the kinematic viscosity that is responsible for thermal
fluctuations and the one controlled by the turbulent viscosity that is responsible for intermittent
fluctuations related to the singularities in the velocity gradient. Therefore, it may be
reasonable to assume that the probability Π (n)(xn) dxn of finding the scaled velocity fluctuation
|xn| = δun/δu0 in the range xn ∼ xn + dxn can be divided into two parts:

Π (n)(xn) dxn = Π (n)
N (xn) dxn + Π (n)

S (|xn|) dxn. (3)

Here, the normal-part PDF Π (n)
N (xn) stems from thermal dissipation and the singular-part PDF

Π (n)
S (|xn|) stems from multifractal distribution of the singularities. The latter is derived through

Π (n)
S (|xn|) dxn = P (n)(α) dα with the following transformation of the variables: |xn| = δ

α/3
n .



2240 T Arimitsu and N Arimitsu

The mth moments of the velocity fluctuations, defined by 〈〈|xn|m〉〉 =∫∞
−∞ dxn |xn|mΠ (n)(xn), are given by

〈〈|xn|m〉〉 = 2γ (n)m + (1 − 2γ (n)0 )amδ
ζm
n (4)

where a3q̄ = {2/[C1/2
q̄ (1 + C1/2

q̄ )]}1/2, with Cq̄ = 1 + 2q̄2(1 − q)X ln 2, and

2γ (n)m =
∫ ∞

−∞
dxn |xn|mΠ (n)

N (xn). (5)

We used the normalization 〈〈1〉〉 = 1. The quantity

ζm = α0m/3 − 2Xm2/[9(1 + C1/2
m/3)] − [1 − log2(1 + C1/2

m/3)]/(1 − q) (6)

is the so-called scaling exponent of the velocity structure function, whose expression was first
derived by the present authors [15–18]. In this paper, we will use the formula (6) in order
to extract the value of the intermittency exponent µ for the best fit to the measured scaling
exponents by the method of least squares.

There usually appears an asymmetry (a negative skewness) in the PDFs of the longitudinal
velocity fluctuations, but this is not so clear in the PDFs of the transverse ones (see, for example,
figure 15 and 16 in [21]). Assuming that the singularities in the velocity gradient contribute
mainly to the symmetric part, we will deal with the symmetric part of the PDFs of the velocity
fluctuations in the following:

With the help of the new variable

ξn = δun/〈〈δu2
n〉〉1/2 = xn/〈〈x2

n〉〉1/2 = ξ̄nδ
α/3−ζ2/2
n (7)

scaled by the variance of velocity fluctuations, the PDF Π̂ (n)(|ξn|), introduced through
Π̂ (n)(|ξn|) dξn = Π (n)(|xn|) dxn, is given by [19, 20]

Π̂ (n)(ξn) = Π̂ (n)
<∗ (ξn) for |ξn| � ξ ∗

n (8)

Π̂ (n)(ξn) = Π̂ (n)
∗< (ξn) for ξ ∗

n � |ξn| � ξ̄nδ
αmin/3−ζ2/2
n . (9)

Here, ξ̄n = [2γ (n)2 δ
−ζ2
n + (1 − 2γ (n)0 )a2]−1/2. Assuming that, for smaller velocity fluctuations

|ξn| � ξ ∗
n , the contribution to the PDF of the velocity fluctuations comes mainly from thermal

fluctuations related to the kinematic viscosity, we take for the PDF Π̂ (n)
<∗ (ξn) a Gaussian

function [19, 20], i.e.,

Π̂ (n)
<∗ (ξn) = Π̄ (n)

S e−[1+3f ′(α∗)][(ξn/ξ∗
n )

2−1]/2 (10)

with Π̄ (n)
S = 3(1 − 2γ (n)0 )/(2ξ̄n

√
2πX| ln δn|). On the other hand, we assume that the main

contribution to Π̂ (n)
∗< (ξn) may come from the multifractal distribution of singularities [18–20]

related to the turbulent viscosity, i.e., Π̂ (n)
∗< (ξn) = Π̂ (n)

S (|ξn|):

Π̂ (n)
∗< (ξn) = Π̄ (n)

S

ξ̄n

|ξn|


1 −

(
3 ln

∣∣ξn/ξn,0∣∣
�α | ln δn|

)2


n/(1−q)

(11)

with |ξn,0| = ξ̄nδ
α0/3−ζ2/2
n . The point ξ ∗

n was defined by ξ ∗
n = ξ̄nδ

α∗/3−ζ2/2
n where α∗ is the

solution of ζ2/2 −α/3 + 1 −f (α) = 0, and Π̂ (n)
<∗ (ξn) and Π̂ (n)

∗< (ξn)were connected at ξ ∗
n under

the condition that they should have the same value and the same derivative there. Here,

f (α) = 1 + (1 − q)−1 log2[1 − (α − α0)
2/(�α)2] (12)

is the multifractal spectrum [15–18], derived from the relation P (n)(α) ∝ δ
1−f (α)
n [9, 18], that

reveals how densely each singularity, labelled by α, fills physical space.
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Figure 1. The longitudinal scaling exponents ζm = ζL
m of the velocity structure function. Panel (b)

is a magnification of the panel (a). The results of DNS obtained by Gotoh et al (Rλ = 381) are shown
by closed circles. The present theoretical formula (6) was used to determine the value µ = 0.240
of the intermittency exponent, and the result is shown by solid curves. Dotted lines represent the
results of Kolmogorov (K41); dashed lines represent She–Leveque results. The prediction of the
log-normal model is given by short-dashed lines with µ = 0.240.
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Figure 2. The transverse scaling exponents ζm = ζT
m of the velocity structure function. Panel (b) is

a magnification of the panel (a). The results of DNS obtained by Gotoh et al (Rλ = 381) are shown
by closed circles. The present theoretical formula (6) was used to determine the value µ = 0.327
of the intermittency exponent, and the result is shown by solid lines. Dotted lines represent K41;
dashed lines represent She–Leveque results. The prediction of the log-normal model is given by
short-dashed lines with µ = 0.327.

Now, we proceed to analyse the data from the DNS conducted by Gotoh et al [21] for fully
developed turbulence. In the following theoretical analyses, we will take δ = 2 for the number
of pieces of ‘eddies’ generated at each step in the energy cascade. In figures 1 and 2, we put,
respectively, the measured scaling exponents ζ L

m for longitudinal velocity fluctuations and ζ T
m

for transverse ones at Rλ = 381 (closed circles) [21]. The scaling exponents (6) derived from
the present theory are given by a solid curve in each figure. There are also represented, for refer-
ence, the predictions of K41 (dotted curve) [1], of She–Leveque (dashed curve) [30] and of the
log-normal model (short-dashed curve) [4–6]. We determine, self-consistently, the values of
the intermittency exponentµ by fitting the formula (6) with the ten observed values of the scal-
ing exponents, ζ L

m and ζ T
m, with the help of the method of least squares. The values determined

for µ are listed in table 1, with the values of the corresponding parameters q, α0 and X. The
latter three parameters are obtained from theµ-dependent functions that are given in this paper
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Table 1. Comparison of the values of the scaling exponents (6) derived using the present theory
and those for the longitudinal and transverse velocity fluctuations observed in DNS conducted by
Gotoh et al. The value µ for each fluctuation is also listed, with the corresponding values for q, α0
and X.

Longitudinal Transverse

µ 0.240 0.327
q 0.391 0.543
α0 1.138 1.189
X 0.285 0.388

ζL
m ζT

m

m Present theory DNS Present theory DNS

1 0.3637 0.370 ± 0.004 0.3747 0.369 ± 0.004
2 0.6965 0.709 ± 0.009 0.7073 0.701 ± 0.01
3 1.000 1.02 ± 0.02 1.000 0.998 ± 0.02
4 1.277 1.30 ± 0.02 1.256 1.26 ± 0.03
5 1.529 1.56 ± 0.03 1.480 1.49 ± 0.04
6 1.761 1.79 ± 0.04 1.674 1.69 ± 0.05
7 1.973 1.99 ± 0.04 1.843 1.86 ± 0.05
8 2.169 2.18 ± 0.04 1.990 2.00 ± 0.04
9 2.350 2.35 ± 0.04 2.117 2.11 ± 0.05

10 2.519 2.49 ± 0.04 2.227 2.20 ± 0.06

as the solutions of the self-consistent equations. Note that the theoretical lines thus determined
are located within the experimental error bars at each of the ten observed points. Therefore,
the relation µ = 2 − ζ6 is satisfied within the experimental error bars. We obtain α+ − α0 =
α0 −α− = 0.6818 (0.8167),�α = 1.160 (1.566) for the longitudinal (transverse) fluctuations.

There is an argument that the scaling exponents ζ L
2 for the longitudinal velocity structure

function and ζ T
2 for the transverse function should be equal for isotropic and incompressible

turbulence. In table 1, we see that ζ L
2 = 0.696 and ζ T

2 = 0.707 within the present theoretical
analysis, which give, respectively, 1.696 and 1.707 for the exponent of the Kolmogorov
spectrum which is 5/3 = 1.6̇ in K41 [1]. The small deviation (1%) between ζ L

2 and ζ T
2

can be attributed to the finite sample size and the small amount of flow anisotropy [21]. The
scaling exponents ζ4 of the fourth-order moment, related to the second-order pressure structure
function, are reported in [21] as ζ L

4 = 1.30 ± 0.02 and ζ T
4 = 1.26 ± 0.03 at Rλ = 381. These

values are comparable with the ones in table 1, i.e., ζ L
4 = 1.277 and ζ T

4 = 1.256 derived using
the present theory.

The comparison between the measured PDFs of the velocity fluctuations at Rλ = 381
obtained by DNS [21] and those obtained by the present analysis [18–20] is shown in figure 3 for
longitudinal fluctuations and in figure 4 for transverse ones. In order to extract the symmetrical
part, we took averages of the left- and right-hand side DNS data. The symmetrized data are
shown by closed circles. The solid lines are the curves Π̂ (n)(ξn) given by (10) and (11) with
the values of the parameters in table 1. The values of ξ ∗

n are about 1–1.5. The separations
r/η = �n/η are, from top to bottom: 2.38, 4.76, 9.52, 19.0, 38.1, 76.2, 152, 305, 609 and
1220 for DNS [21] data. On the other hand, the numbers n of steps in the cascade for
longitudinal (transverse) fluctuations are, from top to bottom: 21.5, 20.0, 16.8, 14.0, 11.8,
10.1, 9.30, 8.10, 7.00 and 6.00 (20.0, 18.2, 14.6, 11.4, 9.30, 7.90, 6.80, 5.60, 4.70 and 4.00).
These values are obtained by the method of least squares with respect to the logarithm of the
PDFs for the best fit of our theoretical formulae (10) and (11) to the observed values of the
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Figure 3. The experimental PDFs of the longitudinal velocity fluctuations measured by Gotoh et al
for Rλ = 381 are compared with the present theoretical results Π̂ (n)(ξn). Closed circles show the
symmetrized points obtained by taking averages of the left- and the right-hand-side DNS data. For
the experimental data, the separations r/η = �n/η are, from top to bottom: 2.38, 4.76, 9.52, 19.0,
38.1, 76.2, 152, 305, 609 and 1220. Solid lines represent the curves given by the present theory
with q = 0.391 (µ = 0.240). For the theoretical curves, the numbers of steps in the cascade n
are, from top to bottom: 21.5, 20.0, 16.8, 14.0, 11.8, 10.1, 9.30, 8.10, 7.00 and 6.00. For better
visibility, each PDF is shifted by −1 unit along the vertical axis.

PDFs, discarding those points which have observed values less than 10−9 (10−8) since they
show substantial scatter on the logarithmic scale. We see an excellent agreement between the
measured PDFs and the analytical formula for the PDF derived from the present self-consistent
theory.

The dependence of n on r/η for longitudinal (transverse) fluctuations, extracted from
figure 3 (figure 4), is shown in figure 5(a) (figure 5 (b)) by solid and dashed curves. These
curves are obtained by the method of least squares within linear fits, and are given by

n = −1.050 log2 r/η + 16.74 (for �L
c � r) (13)

n = −2.540 log2 r/η + 25.08 (for r < �L
c ) (14)

with the crossover length �L
c /η = 48.26 for longitudinal fluctuations and

n = −0.9896 log2 r/η + 13.95 (for �T
c � r) (15)

n = −2.820 log2 r/η + 23.87 (for r < �T
c ) (16)

with the crossover length �T
c /η = 42.57 for transverse fluctuations. We see that �T

c /η � �L
c /η,

and that these crossover lengths have values close to the reported value of the Taylor microscale
λ/η = 38.33 in [21] at Rλ = 381. The value of �T

c /η is very close to the one in figure 31
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Figure 4. The experimental PDFs of the transverse velocity fluctuations measured by Gotoh et al
for Rλ = 381 are compared with the present theoretical results Π̂ (n)(ξn). Closed circles show the
symmetrized points. The separations r/η = �n/η are the same as in figure 3. Solid lines represent
the curves given by the present theory with q = 0.543 (µ = 0.327). The numbers of steps in the
cascade n are, from top to bottom: 20.0, 18.2, 14.6, 11.4, 9.30, 7.90, 6.80, 5.60, 4.70 and 4.00.

of [21], whereas, the values of �L
c /η are different from the one obtained in [21] where Gotoh

et al obtained the relation �L
c /η ≈ 2�T

c /η within their analyses. In spite of the difference
in values of �L

c /η, the inequality �T
c /η < �L

c /η may be attributed as a manifestation of the
incompressible nature of the fluid under consideration, as interpreted in [21]. Notice that this
kind of crossover was not observed in the analysis [19] of the experiment conducted by Lewis
and Swinney [22] for turbulent Couette–Taylor flow.

The equations (13) and (15) have slopes close to −1, with respect to log2 r/η, which
is consistent with (1) for δ = 2. Therefore, we conclude that the upper scaling region
�L
c /η � r/η � 1220 (�T

c /η � r/η � 1220) found within the present systematic analysis
can be interpreted as the inertial range for longitudinal (transverse) fluctuations. Note that this
inertial range for longitudinal fluctuations is wider than the longitudinal scaling range 2λ/η �
r/η � 220.7 observed in [21] atRλ = 381. The latter estimate was obtained by looking for the
flat region of the observed ζ L

m with respect to the separation r/η. The existence of the crossover
length was observed first by Gotoh et al [21] in the analyses of their DNS data as the low end
of the scaling range for the longitudinal or the transverse fluctuations, and was attributed to
the existence of structure of this order in the turbulence, e.g., a shear layer or a vortex tube.

It is remarkable that in figure 5 we can see, within the present self-consistent analysis,
the existence of another new scaling region, the lower scaling region, i.e., 2 � r/η � �L

c /η

(2 � r/η � �T
c /η) for longitudinal (transverse) velocity fluctuations. It may be of interest

that the slopes in (14) and (16) can be −1 with respect to logδ r/η, with δ = δL = 1.33 for
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Figure 5. The dependence of n on r/η is shown by closed circles. (a) Those extracted from figure 3
for longitudinal fluctuations. The crossover occurs at �L

c /η = 48.26. (b) Those from figure 4 for
transverse fluctuations. The crossover occurs at �T

c /η = 42.57.

longitudinal fluctuations and with δ = δT = 1.28 for transverse ones. Therefore, in this lower
scaling region, the interpretation is that eddies break up, effectively, into δL (δT) pieces at each
step of the energy cascade for longitudinal (transverse) fluctuations.

Assuming that (1) with δ = 2 is applicable in the ‘inertial range’ �T
c /η, �

L
c /η � r/η �

�0/η, we can extract from (13) and (15) the values of the Reynolds numberReL = 5.236×106,
for longitudinal eddies, andReT = 7.113×105, for transverse eddies. If we adopt the relation
R2
λ = AL ReL = AT ReT [24], we have AL = 0.027 72 and AT = 0.2041.

In this paper, we showed how precisely the formulae, derived using our theory [15–20],
can explain the data observed in the DNS [21]. We found, explicitly, that there exist two
scaling regions, i.e., the upper scaling region with larger separations which may correspond
to the scaling range observed by Gotoh et al, and the lower scaling region with smaller sep-
arations which is a new scaling region extracted for the first time by the present systematic
analysis. These scaling regions are divided by a definite length approximately of the order of
the Taylor microscale λ, which may correspond to the crossover length introduced by Gotoh
et al [21] as the length at which a scaling behaviour of the structure functions ceases due to
the effect of kinematic viscosity. We also saw that the inertial range (the upper scaling region)
for longitudinal fluctuations is wider than the scaling range extracted by Gotoh et al [21]. The
discovery of the lower scaling region by the present analysis may tell us that the distribution
of singularities of the velocity gradient in physical space is robust enough to produce a scaling
behaviour even in the dissipation range. In other words, the system of turbulence may have an
intrinsic scaling property, operative over a wider region than the inertial range, which can be
attributed as arising from the multifractal distribution of the singularities in the velocity gradi-
ent. A study of the PDFs for velocity derivatives using the present analysis is an attractive open
problem and is now in progress. One attractive future problem is that of obtaining a dynamical
approach based on aspects of the present ensemble theoretical approach that can be used to
interpret—in particular—the lower scaling region. The findings will be reported elsewhere.
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